2015 Spring KAIST Qualifying Exam for Ph. D program Algebraic Topology I

- 1. (20 points: 10 points each)
 - (a) Show that $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$ for $n \geq 2$ using covering map theory.
 - (b) Show that any continuous map $f: \mathbb{R}P^n \to S^1$ is null homotopic for $n \geq 2$.
- 2. (20 points) Let $T^2 = S^1 \times S^1$ be the torus, and let $X = S^1 \times \{1\} \cup \{1\} \times S^1 \subset T^2$. Show that there is no retract of T^2 to X.
- 3. (20 points: (a) 5points, (b) 5 points, (c) 10 points)) Let $X = D^2 \cup_f S^1$ where $f: \partial D^2 = S^1 \to S^1, z \mapsto z^6$. Namely, X is the result of attaching a 2-cell D^2 to S^1 by the map $f: S^1 \to S^1$ defined by $f(z) = z^6$. Let \tilde{X} be the universal covering of X, i.e., \tilde{X} is the simply connected covering of X.
 - (a) Compute $\pi_1(X)$.
 - (b) Find the Euler characteristics $\chi(X)$ and $\chi(\tilde{X})$.
 - (c) Compute $H_*(\tilde{X})$.
- 4. (20 points) Let $D^n = \{x \in \mathbb{R}^n \mid |x| \leq 1\}$, and let $S^{n-1} = \partial D^n = \{x \in D^n \mid |x| = 1\}$. Let $f: D^n \to D^n$ be a continuous map such that $f|_{S^{n-1}}$ is a homeomorphism from S^{n-1} to S^{n-1} . Then show that f is surjective.
- 5. (20 points) Let X be a CW complex constructed from S^1 by attaching two 2-cells, one by the map $z \to z^4$ and the other by the map $z \to z^6$. Compute the homology of X.

QUALIFYING EXAM (ALGEBRA)

Each problem has 10 points.

- 1. (a) Show that every finitely generated subgroup of the additive group Q is cyclic.
 - (b) Exhibit a proper subgroup of the additive group $\mathbb Q$ is not cyclic.
- 2. Let p be a prime and let P be a subgroup S_p of order p. Prove that $|N_{S_p}(P)| = p(p-1)$ and $N_{S_p}(P)/C_{S_p}(P) \cong \operatorname{Aut}(P)$. $(N_{S_p}(P))$ is the normalizer of P in S_p , and $C_{S_p}(P)$ is the centralizer of P in S_p .)
- 3. Let G be a group of order pq where p and q are primes with p < q. Let $P \in Syl_p(G)$, and $Q \in Syl_q(G)$.
 - (a) Show that $G \cong Q \rtimes P$ for some group homomorphism $\varphi : P \to \operatorname{Aut}(Q)$.
 - (b) Determine all isomorphism classes of G.
- 4. Let $f_1(x), f_2(x), \ldots, f_k(x)$ be polynomials with integer coefficients of the same degree d. Let n_1, n_2, \ldots, n_k be integers which are relatively pime in pairs (i.e., $(n_i, n_j) = 1$ for all $i \neq j$). Prove that there exists a polynomial f(x) with integer coefficients and of degree d with

$$f(x) \equiv f_1(x) \mod n_1, \quad f(x) \equiv f_2(x) \mod n_2, \quad \dots, \quad f(x) \equiv f_k(x) \mod n_k$$

i.e., the coefficients of f(x) agree with the coefficients of $f_i(x)$ mod n_i . Show that if all the $f_i(x)$ are monic, then f(x) may also be chosen monic.

- 5. Let \mathcal{U} be the subset of all open sets of \mathbb{C} containing 0 and define a partial ordering on \mathcal{U} by $U \leq V$ if and only if $V \subseteq U$. For $U \in \mathcal{U}$ let \mathcal{O}_U be the set of all analytic functions on U. Prove that the ring $\mathcal{O} = \varinjlim \mathcal{O}_U$ is a discrete valuation ring.
- 6. Let R be a principal ideal domain.
 - (a) Show that every nonzero prime ideal of R is a maximal ideal.
 - (b) Show that a nonzero element of R is a prime if and only if it is irreducible.
- 7. Let I=(2,x) be the ideal generated by 2 and x in the ring $R=\mathbb{Z}[x]$.
 - (a) Show that the element $2 \otimes 2 + x \otimes x$ in $I \otimes_R I$ is not a simple tensor.
 - (b) Show that $\{2, x\}$ is not a basis of I.
- 8. Let R be a commutative ring with 1. Suppose that M and N are projective R-modules. Prove that $M \otimes_R N$ is a projective R-module.
- 9. Find all similarity classes of 3×3 matrices A over $\mathbb Q$ satisfying $A^6 = I$.
- 10. Suppose A is an $n \times n$ matrix over \mathbb{C} for which $A^k = I$ for some integer $k \geq 1$. Show that A can be diagonalized. Show that the matrix $A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ where α is an element of a field of characteristic p satisfies $A^p = I$ and cannot be diagonalized if $\alpha \neq 0$.

Real Analysis Qualifying Exam

- 1. [15] Let (X, \mathcal{A}, μ) be a σ -finite measure space. State each of the following theorems and prove the uniqueness assertion in (a).
 - (a) Riesz Representation Theorem
 - (b) Jordan Decomposition Theorem
- 2. [10] Let X and Y be normed linear spaces. State each of the following theorems.
 - (a) Uniform Boundedness Principle
 - (b) Closed Graph Theorem
- 3. [35] Let (X, \mathcal{A}, μ) be a σ -finite measure space and $\{f_n\}$ be a sequence of measurable functions on X. Let g be a monotone real-valued function on [0, 1].
 - (a) Let $\mu(X) < \infty$ and $\sup_{n \in \mathbb{N}} ||f_n||_{\infty} < \infty$. Use Egoroff Theorem to show that if $\{f_n\}$ converges pointwise a.e. to a function f on X, then

$$\lim_{n \to \infty} \int_X f_n = \int_X f.$$

(b) Use the result in (a) to show that

$$\int_{X} \liminf_{n \to \infty} |f_n| \le \liminf_{n \to \infty} \int_{X} |f_n|.$$

- (c) Let $D = \{x \in [0,1] | g'(x) \in \mathbb{R}\}$ so that m(D) = 1. Use the result in (b) to show that $g' \in L^1[0,1]$. If $g \in C[0,1]$, then must $[0,1] \setminus D$ be countable?
- 4. [20] Let (X, \mathcal{A}, μ) be a measure space and $f \in L^1(\mu)$. Let $\epsilon > 0$. You may use Radon-Nikodym Theorem or Fatou Lemma to prove the following.
 - (a) There is $E \in \mathcal{A}$ with $\mu(E) < \infty$ such that f is bounded on E and $\int_{X \setminus E} |f| < \epsilon$.
 - (b) Let μ be a σ -finite measure and ν be a finite measure on \mathcal{A} . Then $\nu \perp \mu$ if and only if there is no nonzero measure ρ on \mathcal{A} such that $\rho \ll \mu$ and $\rho \leq \nu$ on \mathcal{A} .
- 5. [20] Let X be a normed linear space and S be a linear subspace of X. Let $x \in X$ and $\delta = \inf_{s \in S} ||s x|| > 0$. You may use Hahn-Banach Theorem to prove the following.
 - (a) There is $f \in X^*$ with ||f|| = 1 such that $f(x) = \delta$ and f = 0 on S.
 - (b) If X^* is separable, then X is separable. The converse is not true.

Numerical analysis, Qualifying Exam. 2015

1. (20 pts)

- (a) Define a Lagrange interpolation polynomial with data $\{(x_i, f(x_i))\}_{i=0}^n$. x_i all distinct.
- (b) What is the error form in the above? Derive it.
- (c) Define a Newton's form of interpolation polynomial using the same data.
- (d) Explain what happens if some x_i are repeated in the Newton's form. What is the correct data corresponding to the repeated points?
- 2. (10 pts) Describe Newton's method to solve a system of nonlinear equations $\mathbf{F}(\mathbf{x}) := A\mathbf{x} + g(\mathbf{x})\mathbf{x} = 0$ starting from some initial points \mathbf{x}_0 . Here $\mathbf{x} = (x, y)$, $A = (a_{ij})$ is 2×2 , nonsingular constant matrix and $g(\mathbf{x})$ is a scalar C^1 -function of \mathbf{x} .
- 3. (10 pts) Explain Runge phenomena in approximation and suggest how one can avoid it.
- 4. (15 pts) Consider the following integral equation:

$$x(t) = \int_a^b K(t,s) x(s) \, ds + g(t)$$

where $K(t,s): \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous functions.

- (a) Define a Picard method to show the existence of the solution x(t) and state appropriate condition(s) to guarantee the solution.
- (b) Prove the solution exists in C([a, b]), the space of continuous functions under the maximum norm $\|\cdot\|_{\infty} = \max_{[a,b]} |x(t)|$.

5. (15 pts)

- (a) State a Householder algorithm to reduce an $n \times n$ real matrix A to an upper Hessenberg form
- (b) Explain how to find eigenvalues of a symmetric matrix A using the Householder algorithm.

(Continue on the next page)

- 6. (10 pts) Describe Euler's method (both explicit and implicit) to solve an ODE. $\dot{x} = f(t, x(t)), x(0) = x_0$. Compare these two method each other and discuss the advantages and disadvantages.
- 7. (20 pts) Assume A is a nonsingular $n \times n$ matrix and $\mathbf{v}^T A^{-1} \mathbf{u} \neq 1$ for some vectors \mathbf{v}, \mathbf{u} .
 - (a) Show that $A \mathbf{u}\mathbf{v}^T$ is nonsingular and

$$(A - \mathbf{u}\mathbf{v}^{T})^{-1} = A^{-1} + \frac{A^{-1}\mathbf{u}\mathbf{v}^{T}A^{-1}}{\gamma}.$$
 (1)

for some number γ .

(b) Generalize this formula to the case when U, V are $n \times k$ matrices of rank k, i.e., show that

$$(A - UV^T)^{-1} = A^{-1} + A^{-1}BA^{-1}$$
 (2)

for some $n \times n$ matrix B.

Complex Analysis, Ph.D. Qualifying Exam, February 2015

- 1. (10 pts) Prove or disprove: Every non-constant polynomial with complex coefficients has a root in C.
- 2. (20 pts) Evaluate
 - (a) $\int_{-\infty}^{\infty} e^{-(x+ia)^2} dx$ for a real.

(b)
$$p.v. \int_{-i\infty}^{i\infty} \frac{dz}{(z^2 - 4)\log(z + 1)} := \lim_{\epsilon \to 0^+} \int_{i\mathbb{R} \setminus [-i\epsilon, i\epsilon]}^{\cdot} \frac{dz}{(z^2 - 4)\log(z + 1)}.$$

- 3. (20 pts)
 - (a) Let f be holomorphic in a region containing the annulus $\{z \in \mathbb{C} : r_1 \le |z z_0| \le r_2\}$ where $0 < r_1 < r_2$. Show that there are constants $a_n \in \mathbb{C}$ such that

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n,$$

where the series converges absolutely in the interior of the annulus.

(b) Let f(z) be holomorphic in a punctured disc $B'_r(z_0) = \{z \in \mathbb{C} : 0 < |z - z_0| < r\}$. Suppose also that there is a $\epsilon > 0$ such that

$$|f(z)| \le |z - z_0|^{-1+\epsilon}$$
 for all z near z_0 .

Classify the singularity of f at z_0 with proof.

- 4. (15 pts) Prove or disprove: If K is a compact set and f is holomorphic in a neighbourhood of K, then f can be approximated uniformly on K by polynomials.
- 5. (20 pts) Let $f: \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0 where $\mathbb{D} = \{z \in \mathbb{C}: |z| < 1\}$. Prove that
 - (a) $|f(z)| \le |z|$ for all $z \in \mathbb{D}$.
 - (b) If $|f(z_0)| = |z_0|$ for some $z_0 \neq 0$, then f is a rotation.
- 6. (15 pts) A bijective holomorphic function is called a conformal map. Find all the conformal maps from \mathbb{D} to \mathbb{D} where $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

(Hint: consider Blaschke factors and use the Schwarz lemma which is the problem 5)

Doctoral Qualifying Exam, Differential geometry 4th February 2015

Problem 1 (15 points)

Suppose that A and B are two disjoint closed subsets of a smooth manifold M. Show that there exists a smooth function $f: M \to \mathbb{R}$ such that $f(x) \in [0, 1]$ for any $x \in M$, $A = f^{-1}(0)$, and $B = f^{-1}(1)$.

Problem 2 (20 points)

Suppose that M is a smooth manifold without boundary, N is a smooth manifold with boundary and $F: M \to N$ is a smooth map. Show that if at the point $p \in M$ dF_p is non-singular, then $F(p) \in Int(N)$.

Problem 3 (20 points)

Find the tangent plane (at a generic point) to the surface H in \mathbb{R}^3 defined by

$$x^2 + y^2 - z^2 + 1 = 0.$$

Problem 4 (20 points)

Let

$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}, \quad Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}$$

be two vector fields on the plane. Compute the flows θ , ψ of X and Y, and verify that the flows do not commute by finding explicit open intervals J and K containing 0 such that $\theta_s \circ \psi_t$ and $\psi_t \circ \theta_s$ are both defined for all $(s, t) \in J \times K$, but they are not equal for some such (s, t).

Problem 5 (25 points)

Let S denote the set of matrices of the form

$$M(u,v,w) := \left(egin{array}{cccc} \cos(w) & \sin(w) & 0 & u \ -\sin(w) & \cos(w) & 0 & v \ 0 & 0 & 1 & w \ 0 & 0 & 0 & 1 \end{array}
ight),$$

where $u, v, w \in \mathbb{R}$.

- (1) Show that S is a Lie subgroup of $GL(4, \mathbb{R})$.
- (2) Let $\sigma: \mathbb{R}^3 \to GL(4,\mathbb{R})$ the map defined by

$$(u, v, w) \rightarrow M(u, v, w).$$

Compute $d\sigma\left(\frac{\partial}{\partial u}\right)$, $d\sigma\left(\frac{\partial}{\partial v}\right)$, $d\sigma\left(\frac{\partial}{\partial w}\right)$ and show that σ is an immersion. (3) Show that the tangent space to S at the identity element e of S admits the basis

$$\left\{ \left. \frac{\partial}{\partial x_{1,4}} \right|_e, \left. \frac{\partial}{\partial x_{2,4}} \right|_e, \left. \frac{\partial}{\partial x_{1,2}} \right|_e - \left. \frac{\partial}{\partial x_{2,1}} \right|_e + \left. \frac{\partial}{\partial x_{3,4}} \right|_e \right\}.$$

Here $x_{i,j}$ denotes the entry of a matrix in $GL(4,\mathbb{R})$ located on the *i*-th row and *j*-th column.

Ph.D Qualifying Exam Probability Feb 2015 (3 hours)

Problem 1. (10pt) Prove directly from definition that if X and Y are independent random variables and f, g are measurable functions then f(X) and g(Y) are independent.

Problem 2. (15pt) Suppose $\{X_t, t \geq 0\}$ is a collection of real valued random variables on the probability space (Ω, \mathcal{B}, P) in which the function $t \to X_t(\omega)$ is continuous almost surely. Let $\tau : \Omega \mapsto [0, \infty)$ be a random variable and define the function $X_\tau : \Omega \mapsto [0, \infty)$ by

$$X_{\tau}(\omega) := X_{\tau(\omega)}(\omega), \ \omega \in \Omega$$

Prove X_{τ} is a random variable.

Problem 3. (15pt) Suppose $\{X_n, n \geq 1\}$ are independent random variables with $E(X_n) = 0$ for all n. If

$$\sum_n E(X_n^2 1_{[|X_n| \le 1]} + |X_n| 1_{[|X_n| > 1]}) < \infty,$$

then $\sum_{n} X_n$ converges almost surely.

Problem 4. (15pt) Let X_n be independent Poisson r.v.s with $EX_n = \lambda_n$, and let $S_n = X_1 + \cdots + X_n$. Show that if $\lambda_n \to \infty$, then $S_n/ES_n \to 1$ a.s.

Problem 5. (15pt) Suppose X_n and Y_n are independent for each n and $X_n \Rightarrow X$, $Y_n \Rightarrow Y$. Prove using characteristic functions that

$$X_n + Y_n \Rightarrow X + Y$$
.

Problem 6. (15pt) Let $\{X_n, n \geq 1\}$ be a sequence of independent r.v.s with $EX_n = 0$ and $EX_n^2 = \sigma_n^2 < \infty$. Define $s_n^2 = \sum_{k=1}^n \sigma_k^2$. Show that $S_n^2 - s_n^2$ is a martingale.

Problem 7. (15pt) Suppose $\{X_n > 1\}$ are i.i.d. nonnegative r.v. with $EX_n = \mu$ and $Var(X_n) = \sigma^2$. Use the central limit theorem to derive an asymptotic normality result for $N(t) = \sup\{n : S_n \leq t\}$. That is,

$$\frac{N(t) - t/\mu}{\sigma t^{1/2} \mu^{-3/2}} \Rightarrow N(0, 1).$$